Flow visualization analysis of a monopivot centrifugal blood pump developed by MERA
نویسندگان
چکیده
منابع مشابه
PIV measurements of flow in a centrifugal blood pump: steady flow.
Magnetically suspended left ventricular assist devices have only one moving part, the impeller. The impeller has absolutely no contact with any of the fixed parts, thus greatly reducing the regions of stagnant or high shear stress that surround a mechanical or fluid bearing. Measurements of the mean flow patterns as well as viscous and turbulent stresses were made in a shaft-driven prototype of...
متن کاملPIV measurements of flow in a centrifugal blood pump: time-varying flow.
Measurements of the time-varying flow in a centrifugal blood pump operating as a left ventricular assist device (LVAD) are presented. This includes changes in both the pump flow rate as a function of the left ventricle contraction and the interaction of the rotating impeller and fixed exit volute. When operating with a pulsing ventricle, the flow rate through the LVAD varies from 0-11 L/min dur...
متن کاملExperimental Study and Three-Dimensional Numerical Flow Simulation in a Centrifugal Pump when Handling Viscous Fluids
In this paper the centrifugal pump performances are tested when handling water and viscous oils as Newtonian fluids. Also, this paper shows a numerical simulation of the three-dimensional fluid flow inside a centrifugal pump. For these numerical simulations the SIMPLEC algorithm is used for solving governing equations of incompressible viscous/turbulent flows through the pump. The k-ε turbulenc...
متن کاملMagnetic drive system for a new centrifugal rotary blood pump.
The purpose of this investigation was to design a novel magnetic drive and bearing system for a new centrifugal rotary blood pump (CRBP). The drive system consists of two components: (i) permanent magnets within the impeller of the CRBP; and (ii) the driving electromagnets. Orientation of the magnets varies from axial through to 60 degrees included out-lean (conical configuration). Permanent ma...
متن کاملFinite element analysis of stresses developed in blood sacs of a pusherplate blood pump.
Mechanical circulatory support (MCS) devices are blood pumps that support or replace the function of the native heart. It is important to minimize the material stresses in the flexing blood sac or diaphragm in order to increase the duration of support these devices can provide. An axisymmetric finite element model of a pusherplate blood pump was constructed to evaluate the effect of various des...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of the Visualization Society of Japan
سال: 2006
ISSN: 1884-037X,0916-4731
DOI: 10.3154/jvs.26.supplement1_183